
 
 

 

  
Abstract— The VMEbus is an IEEE standard architecture 

upon which many embedded and real-time systems are built.  It 
has existed for nearly 25 years and has been extensively used for 
military, industrial, and aerospace applications.  This paper 
describes the general characteristics of the VMEbus architecture, 
specifically relating these characteristics to aspects of embedded 
systems education included as components of the IEEE/ACM 
CE2004 computer engineering model curriculum.  Portions of 
this model curriculum are currently being implemented at 
universities across the country as part of an increasing effort to 
address the need for embedded systems education.  This 
evaluation will help to identify the strengths and weaknesses of 
this architecture as a general-purpose embedded systems 
educational tool.   
 

Index Terms— Computer architecture, computer engineering 
education, educational technology, embedded systems.  
 

I. INTRODUCTION 
MBEDDED systems are becoming more and more common 
as feature size and power requirements of electronic 

components decrease and overall performance improves.  As a 
result, more and more graduates are entering careers working 
directly with the design and implementation of embedded 
systems [1].  In order to prepare graduates for the challenges 
in this field, many universities are incorporating embedded 
systems concepts into their computer engineering curriculum.  
However, embedded systems education is difficult to 
generalize due to the following:  

• Embedded systems education incorporates a broad 
range of concepts from many disciplines;  

• Different programs have different goals associated 
with their embedded systems curricula; 

• There exists a diverse range of embedded 
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applications; 
• There are many different technologies used in 

embedded systems;   
• There is a wide range of design constraints 

imposed on embedded systems; and 
• There are many different embedded systems 

architectures and platforms in use today. 
 
Because of these characteristics, embedded systems 

education is fragmented and customized from one university 
to another.  In an attempt to provide curricular guidelines for 
education in this field, the IEEE/ACM CE2004 computer 
engineering model curriculum for embedded systems was 
created [2].  This model provides a comprehensive list of 
recommended topics that are important for embedded systems 
education.  Universities are challenged to integrate these 
topics into the classroom and to create laboratory platforms 
capable of supporting these topics.   

In this paper, we evaluate a popular embedded systems 
architecture to determine its suitability as a general-purpose 
laboratory platform for embedded systems education.  This 
architecture, the VMEbus, was developed nearly 25 years ago 
and has been used extensively in industrial, military, 
aerospace, communication, and control applications.  Despite 
its age, it is still one of the most popular architectures for 
embedded and real-time systems accounting for 38% of the 
embedded systems market in 2002 [3,4].  The emphasis here 
will be to evaluate the VMEbus architecture against the model 
curriculum as opposed to comparing various embedded 
architectures.   

The remainder of this paper is organized as follows.  
Section II provides a general description of the VMEbus 
architecture.  Section III evaluates how the architecture 
supports many of the components of the model curriculum.  
Conclusions are presented in section IV. 
 

II. THE VMEBUS ARCHITECTURE 

A. Background 
The VMEbus is a system architecture consisting of the 

electrical specifications for a communication bus and the 
mechanical specifications describing the backplane, bus 
connectors, board sizes and formats, as well as card cages, 
racks, and enclosures.  VME stands for Versa Module 
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Eurocard and refers to the VERSAbus, the predecessor 
electrical data bus standard, and the Eurocard, a predecessor 
mechanical format for computer components.  The VME 
specification was completed in 1982 and is now part of the 
ANSI/IEEE STD. 1014-1987.  This is an open architecture 
allowing third parties to freely develop VMEbus products [5, 
6].  

B. General VMEbus Architecture 
The VMEbus architecture is a shared system bus 

architecture.  The system bus resides on a backplane.  The 
backplane has slots where processor modules, memory 
modules, or I/O modules connect to the system bus [6, 7].  
The backplane and all of the modules connected to it reside in 
an enclosure that serves to protect the components, provide 
structural support for the system, and house utility 
components such as power supplies and cooling fans.  Figure 
1 shows one possible system configuration.  The modular 
design of this architecture provides great flexibility.  All the 
components are available commercially-off-the-shelf (COTS).   

C. System Bus Characteristics 
A functional block diagram of the VME system bus is given 

in Figure 2, and the basic system bus characteristics are 
summarized in Table 1.  It is beyond the scope of this paper to 
describe all of the specific characteristics and the timing 
behavior of the bus.  However, Figure 2 and Table 1 provide a 
broad summary of the basic bus characteristics that will aid 
the reader during this evaluation.  Also, these characteristics 
are those of the basic VME32 specification.  Many extensions 
to this specification have been created, but for this discussion, 
the basic design will be used. 

 
 

 
 

Figure 1. Diagram of the general components and 
configuration of the VMEbus architecture [8]. 

 
 
 
 
 
 
 
 
 
 
 

Table 1.  Summary of the VME32 system bus characteristics 
[5, 6]. 

 
Architecture 
Master/Slave 
Transfer Mechanism 
Asynchronous (no central synchronization 
clock) 
Fully handshaked  
Non-multiplexed 
Multiplexed for 64-bit transfers 
Addressing Range 
16-bit (short I/O) 
24-bit (standard I/O) 
32-bit (extended I/O) 
64-bit (long I/O) 
Address range is selected dynamically 
Datapath Width 
8, 16, 24, 32, 64-bit  
Datapath width selected dynamically 

Unaligned Data Transfers 
Yes 
Compatible with most popular processors 

Error Detection 
Yes 
Using BERR* (optional) 

Data Transfer Rate 
0-80 Mbytes/sec 

Interrupts 
7 levels 
Priority interrupt system with STATUS/ID 

Multiprocessing Capability 
1-21 processors 
Flexible bus arbitration 

System Diagnostic Capability 
Yes 
Using SYSFAIL* (optional) 

Mechanical Standard 
Single height (160 x 100 mm eurocard) 
Double height (160 x 233 mm eurocard) 
DIN 603-2 connectors 

 
 
 
 
 
 
 
 
 
 
 
 

Backplane 
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Figure 2.  Functional block diagram of the VME system bus [6]. 

 
 

III. THE VMEBUS SUPPORT FOR THE MODEL 
CURRICULUM 

To evaluate the capability of the VMEbus architecture for 
use as a general-purpose embedded systems educational 
platform, its characteristics and capabilities will be discussed 
as they apply to each embedded systems component of the 
IEEE/ACM model curriculum for computer engineering [2].  
The rationale is that if the architecture can address the 
concepts in the model curriculum it should be able to support 
the diverse embedded systems curricula being taught across 
the country.   

The embedded systems portion of the model curriculum is 
broken into eleven areas of which seven are core topics and 
four are considered to be elective material.  In the following 
subsections, each of these areas is addressed.  Each section 
begins with a list of the topics and learning outcomes from the 
model for a particular area that can be supported by the 
VMEbus architecture.  How the architecture supports these 
topics and learning outcomes for each area is then presented.   

 

A.   CE-ESY0 History and Overview (core) 
Topics 
• Highlight some people that influenced or contributed to 

the area of embedded systems; 
• Contrast between an embedded system and other 

computer systems [2]. 
 
Learning Outcomes 
• Identify some contributors to embedded systems and 

relate their achievements to the knowledge area; 
• Describe the meaning of an embedded system; 
• Explain the reasons for the importance of embedded 

systems [2]. 
 
The VMEbus architecture holds its own place in the history 

and evolution of embedded systems.  It was developed 
specifically for embedded applications.  It is one of the most 
frequently used architectures for real-time applications [3] and 
accounts for 38% of the embedded systems market [4].  Also, 
the fundamental components of the VMEbus architecture are 
designed and configured differently than those used in 
desktop computer systems.  The form factor, component 
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placement, component interaction, and overall system design 
is different.  This makes it easy to introduce embedded 
systems, compare and contrast them to general-purpose 
computing systems, and to justify their significance.  

B. CE-ESY1 Embedded Microcontrollers (core) 
Topics 
• Structure of the basic computer system: CPU, memory, 

I/O devices on a bus; 
• CPU families used in microcontrollers: 4-bit, 8-bit, 16-

32-bit; 
• Basic I/O devices: timers/counters, GPIO, A/D, D/A; 
• Polled I/O vs. interrupt-driven I/O; 
• Interrupt structures: vectored and prioritized interrupts; 
• Direct memory Access (DMA) transfers; 
• Memory management units; 
• Memory hierarchies and caches [2]. 
 
Learning Outcomes 
• Understand the CPU in the context of a complete 

system with I/O and memory; 
• Understand how the CPU talks to the outside world 

through devices; 
• Understand how memory system design (caches, 

memory management) affect program design and 
performance [2]. 

 
The VMEbus architecture design is based upon the most 

basic of system structures.  The modular design and 
interchangeable characteristics of the system components 
gives students real system design and integration experience 
reinforcing the first learning outcome.  Also, the asynchronous 
bus protocol and variable width data transfers make the 
architecture compatible with many different processor 
families.  This is a key concept since a large percentage of 
embedded systems rely on technology other than 32-bit 
processors [9].  The ability to connect a logic analyzer directly 
to the bus signals also provides a means for students to 
analyze bus and system timing, to study the asynchronous 
handshaking protocol in depth, and to investigate bus 
arbitration and bus saturation.   

Since the architecture was originally designed for I/O 
intensive applications, there are many COTS I/O devices that 
can be used to teach the I/O topics and achieve the second 
learning outcome.  The asynchronous system bus design 
allows the architecture to support I/O peripherals of various 
speeds using either polled I/O or an interrupt-driven design.  
The VME system bus supports 7 levels of prioritized 
interrupts and can handle vectored interrupts.   

The VME specification also provides flexible memory 
design helping to achieve the third learning outcome in this 
area.  For example, single transfers can be used or block 
transfers can be used for DMA operations.  Different memory 
configurations can be created ranging from shared global 
memory to completely distributed memory creating both 
uniform memory access (UMA) and non-uniform memory 
access (NUMA) system configurations [10].  Cache memory 
is commonly available on processor modules and contributes 

to the design of various memory hierarchies.  This also allows 
for the introduction of memory inconsistency into the 
curriculum and provides a platform to demonstrate its effects 
on system and program performance. 

C.   CE-ESY2 Embedded Programs (core) 
Topics 
• The program translation process: compilation, 

assembly, linking; 
• Fundamental concepts of assembly language and 

linking: labels, address management; 
• Compilation tasks: mapping variable to memory, 

managing data structures, translating control structures, 
and translating expressions; 

• What can/cannot be controlled through the compiler; 
when writing assembly language makes sense [2]. 

 
Learning outcomes 
• Understand how high-level language programs convert 

into executable code; 
• Know the capabilities and limits of compilers [2]. 

 
The VMEbus architecture supports these topics and learning 

outcomes through the wide variety of operating systems and 
software development environments available for use with the 
architecture.  The variety of software available for this 
architecture is unparalleled.  For example, there are at least 
103 operating systems known to be ported to this architecture 
[11].  Compilers and assemblers for many different high-level 
languages (HLLs), such as C, C++, and FORTRAN, and 
assembly languages are available depending upon the system 
components used.  This makes it convenient to examine high-
level code and its associated lower-level constructs.  
Applications can be implemented in both a HLL and an 
assembly language for performance comparisons.  Also, the 
processor modules can be used without an operating system 
(OS), which is often the case for embedded systems.  In this 
case, students are exposed to rudimentary development 
environments possibly even entering the binary representation 
of each instruction directly into memory manually.  Students 
can be exposed to both locally hosted development 
environments and cross-compiled environments.   

D. CE-ESY3 Real-Time Operating Systems (core) 
Topics 
• Context switching; 
• Real-time scheduling concepts; 
• Interprocess communication mechanisms [2]. 
 
Learning outcomes 
• Distinguish a real-time operating system (RTOS) from 

a workstation/server OS; 
• Distinguish real-time scheduling from traditional OS 

scheduling; 
• Understand major real-time scheduling policies; 
• Understand interprocess communication mechanisms 

[2]. 
The VMEbus architecture is one of the most popular 
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architectures for real-time computing and has been for many 
years [3].  Many different RTOSs have been ported to many 
different processor families for this architecture.  Some of 
these RTOSs include Real-Time Linux, VxWorks, QNX, and 
OS-9.  Many of these RTOSs support the POSIX real-time 
extensions for interprocess communication.  Various 
scheduling strategies and timing issues can be investigated.  A 
VMEbus system using an RTOS can be configured to address 
an exact subset of these topics and learning outcomes to 
accommodate different educational strategies.  In addition, 
multiple processor modules in one VMEbus system can be 
configured to execute different OSs.  In this way, direct 
comparisons can be made between an RTOS and a non-real-
time OS executing on the exact same architecture.   

E. CE-ESY4 Low Power Computing (core) 
Topics 
• Sources of energy consumption; 
• Instruction-level strategies for power management: 

function unit management; 
• Memory system power consumption: caches, off-chip 

memory; 
• Power consumption with multiple processes; 
• System-level power management: deterministic, 

probabilistic methods [2]. 
 
Learning outcomes 
• Understand why low-power computing is important; 
• Identify sources of energy consumption; 
• Identify possibly remedies for energy consumption at 

various levels of design abstraction [2]. 
 
There is no specific support in the VMEbus specification 

for low power computing.  A typical VMEbus enclosure is not 
remotely powered, thus eliminating the need for strict energy 
management strategies such as those seen in handheld and 
remotely deployed embedded systems.  However, this does 
not prevent one from monitoring energy consumption of the 
system modules such as memory and comparing and 
contrasting energy usage in single and multiple processor 
systems to achieve the learning outcomes.  Additionally, the 
asynchronous bus protocol will support both high and low 
speed processors in the same system.  Since reducing clock 
speed is one primary power management technique, this 
architecture can provide a platform to make direct 
comparisons of power consumption for system components 
having different clock speeds.  Finally, custom low power 
circuitry can be developed on prototyping system modules and 
interfaced to the VMEbus system for control and monitoring.  
Controlling custom low power components within an existing 
system architecture can also help to achieve the learning 
outcomes suggested in this area of the model curriculum.  

F. CE-ESY5 Reliable System Design (core) 
Topics 
• Transient vs. permanent failures in hardware; 
• Sources of errors from software; 
• The role of design verification in reliable system 

design; 
• Fault-tolerant techniques [2]; 
 
Learning outcomes 
• Understand the variety of sources of faults in embedded 

computing systems; 
• Identify strategies to find problems; 
• Identify strategies to minimize the effects of problems 

[2]. 
 

To address these concepts and learning outcomes, students 
using the VMEbus architecture can be exposed to a wide 
variety of problems ranging from low-level errors in the 
fundamental bus transactions to debugging software written in 
high-level languages.  Fault tolerance using redundancy can 
be introduced by including redundant system components.  
Students have access to both hardware and software on these 
systems requiring failure strategies and debugging in both 
domains.  

G. CE-ESY6 Design Methodologies (core) 
Topics 
• Multi-person design projects; 
• Designing on-time and on-budget; 
• Design reviews; 
• Tracking error rates and sources; 
• Change management [2]. 
 
Learning outcomes 
• Understand why real-world projects are not the same as 

class projects; 
• Identify important goals of the methodology; 
• Understand the importance of design tracking and 

documentation [2]. 
 
The VMEbus architecture actually supports these design 

concepts and learning outcomes better than many other 
educational technologies.  The reason for this is that the 
VMEbus architecture supports design at various levels of 
abstraction.  For example, given a set of modules, students can 
make meaningful system-level design decisions including the 
number of processors, the design of the I/O system, and the 
configuration of memory (distributed, shared, hierarchy 
characteristics, etc.).  Low-level design can be incorporated 
into a project by having students design logic components 
capable of interfacing to the VME system bus.  Real-world 
concepts can be addressed by incorporating VMEbus 
component documentation into projects, thus exposing 
students to typical technical documentation they are likely to 
see as a practicing engineer.  This tends to reinforce the 
importance for students to produce accurate documentation of 
their own systems.  The fact that the VMEbus is a real 
embedded systems architecture can motivate students since 
they see the project as more than an academic exercise. 

H.   CE-ESY7 Tool Support (elective) 
Topics 
• Compilers and programming environments; 
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• Logic analyzers; 
• RTOS tools; 
• Power analysis; 
• Software management tools; 
• Project management tools [2]. 
 
Learning outcomes 
• Understand the role of hardware and software tools in 

system design; 
• Understand how to use tools to support the 

methodology [2]. 
 
The tools and environments available to VMEbus designers 

are plentiful and varied in design, objective, and scope.  There 
are many different software tools such as compilers, 
assemblers, debuggers, development environments, and real-
time analysis tools.  There are also custom function libraries 
and drivers tailored to particular system components available 
from various vendors.  For locally hosted systems, software 
tool availability is dependent upon the OS executing on the 
processor module.  But, this is typically not a limitation since, 
as previously mentioned, at least 103 OSs have been ported to 
this architecture [11].  There are also special purpose logic 
analyzers designed specifically to analyze VME system bus 
timing.  Individual institutions can select particular OSs and 
tools to tailor their VMEbus system to accommodate their 
particular curricular goals and objectives.  Finally, something 
that is not directly listed in the model curriculum but does 
represent a major concept is the development of device drivers 
[12].  If desired, students can develop drivers for various I/O 
peripherals using this architecture.   

I. CE-ESY8 Embedded Multiprocessors (elective) 
Topics 
• Importance of multiprocessors as in performance, 

power, and cost; 
• Hardware/software partitioning for single-bus systems; 
• More general architectures; 
• Platform field programmable gate arrays (FPGAs) as 

multiprocessors [2]. 
 
Learning outcomes 
• Understand the use of multiple processors in embedded 

systems; 
• Identify trade-offs between CPUs and hardwired logic 

in multiprocessors; 
• Understand basic design techniques [2]. 

 
With the increasing complexity of embedded systems, 

multiprocessing is becoming a requirement in order to meet 
performance specifications.  This is especially true for real-
time applications.  One of the strengths of the VME 
architecture is its multiprocessing capabilities [4].  The 
modular design of the components makes it easy to create 
various multiprocessor configurations.  For example, all 
processors can be identical creating a homogeneous system, or 
each processor can be different, even executing different OSs, 

to produce a heterogeneous system.  Memory configurations 
are also flexible ranging from completely shared to completely 
distributed.  Thus, the VMEbus architecture can easily be used 
to teach students general multiprocessor architectures and 
basic design techniques.  FPGA devices integrated into a 
VMEbus module are available and can be used to teach 
hardware/software co-design [13], partitioning, trade-off 
analysis and performance analysis.  The use of reconfigurable 
hardware technology for embedded systems education is 
common [14], but incorporating it into the VMEbus 
architecture creates a robust educational platform where this 
hardware can be integrated with real-time system components.  
Multiprocessor architectures can be used to teach other topical 
areas in the model curriculum as well including bus 
characteristics such as arbitration and saturation.  Bus 
saturation is a key design consideration within multiprocessor 
architectures.  Also, memory characteristics such as mutual 
exclusion and interprocess communication, as discussed in 
section III D, are reinforced.    

J.   CE-ESY9 Networked Embedded Systems (elective) 
Topics 
• Why networked embedded systems; 
• Example networked embedded systems; 
• The OSI reference model; 
• Types of network fabrics; 
• Network performance analysis; 
• Basic principles of the Internet protocol; 
• Internet-enabled embedded systems [2]. 
 
Learning outcomes 
• Understand why networks are components of 

embedded systems; 
• Identify roles of hardware and software in networked 

embedded systems; 
• Compare networks designed for embedded computing 

with Internet networking [2]. 
 
The VMEbus architecture can provide insight into 

networking concepts in several different ways.  Since the 
architecture is common in industrial control applications, it is 
normal to have VMEbus enclosures physically distributed 
throughout the factory yet logically connected to promote 
sharing of resources and provide for centralized monitoring 
and control.  There are many different products available that 
can logically connect distributed VMEbus systems.  Some of 
these products include reflective memory (shared memory), 
fiber optics, and various standardized communication 
protocols like the TCP/IP and the MIL-STD-1553 bus 
standard.  With so many choices, institutions can investigate 
concepts such as shared memory, dedicated local-area-
networks, shared wide-area-networks, different protocols, and 
network bandwidth and congestion.  Comparisons can be 
made between dedicated networks and Internet networking.  
Various customized networked systems can be created to 
achieve the specified learning outcomes.  
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K. CE-ESY10 Interfacing and Mixed-Signal Systems 
(elective) 
Topics 
• Digital-to-analog (D/A) conversion; 
• Analog-to-digital (A/D) conversion; 
• How to partition analog/digital processing in interfaces; 
• Digital processing and real-time considerations [2]. 
 
Learning outcomes 
• Understand pros and cons of digital and analog 

processing in interfaces; 
• Understand fundamentals of A/D and D/A conversion 

[2]. 
 
A/D and D/A conversion are important components of I/O 

processing and are addressed in that context in section III B.  
The main topic in this section deals with mixed-signal design.  
There is no direct support for this within the VMEbus 
specification.  However, mixed-signal design fits well within 
the VMEbus architecture which was designed for I/O 
intensive applications.  Specifically, interfacing the digital and 
analog components of the system can be addressed using bus 
modules which include prototyping areas for custom design.  
In this way, students can be tasked with interfacing analog 
components to an existing digital system outside the normal 
I/O context.  The real-time aspects of the architecture provide 
unlimited possibilities for investigating signal processing with 
real-time constraints.   
 

IV. CONCLUSIONS  
Embedded systems education is rapidly being implemented 

in electrical and computer engineering programs across the 
nation.  But, it is unlikely that institutions of higher learning 
will implement a common embedded systems curriculum in 
the near future.  The broad nature of the field and different 
educational objectives have led to highly customized curricula 
supported by equally customized laboratory platforms. The 
IEEE/ACM model curriculum attempts to provide guidelines 
for the concepts required in this field.  Laboratory platforms 
capable of supporting these concepts can be applied as 
general-purpose educational tools across many curricula.   

In this paper, the VMEbus architecture is evaluated against 
the model curriculum to determine its suitability as a general-
purpose educational platform in this field.  This architecture is 
shown to support many of the concepts in the model 
curriculum addressing many different educational objectives 
and learning outcomes.  Specifically, there is strong support 
for topics including historical and introductory concepts, 
system design, I/O, real-time systems, multiprocessing, 
memory configurations, networked embedded systems, and 
software tool support.  Other benefits of the use of this 
architecture include exposing students to a real-world 
embedded architecture, the wide range of COTS components 
available supporting various system configurations, and its 
longevity in the field.   

Like all other architectures, it is not perfect.  The VMEbus 
architecture does not address one key concept from the model 

curriculum, low-power computing.  Also, size constraints are 
not addressed outside the context of the VME form factor.  
Although size is not specifically part of the model curriculum, 
system-on-a-chip implementations are critical for many 
embedded applications including handheld consumer 
electronics.  Finally, VME system components are relatively 
expensive.  This is a serious consideration for educational use.   

Despite these weaknesses, the authors feel that the VME 
architecture represents a powerful, capable embedded systems 
architecture that is appropriate for general-purpose embedded 
systems education based upon its strong support for most of 
the concepts in the model curriculum.   
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