

Abstract— The VMEbus is an IEEE standard architecture

upon which many embedded and real-time systems are built. It
has existed for nearly 25 years and has been extensively used for
military, industrial, and aerospace applications. This paper
describes the general characteristics of the VMEbus architecture,
specifically relating these characteristics to aspects of embedded
systems education included as components of the IEEE/ACM
CE2004 computer engineering model curriculum. Portions of
this model curriculum are currently being implemented at
universities across the country as part of an increasing effort to
address the need for embedded systems education. This
evaluation will help to identify the strengths and weaknesses of
this architecture as a general-purpose embedded systems
educational tool.

Index Terms— Computer architecture, computer engineering
education, educational technology, embedded systems.

I. INTRODUCTION
MBEDDED systems are becoming more and more common
as feature size and power requirements of electronic

components decrease and overall performance improves. As a
result, more and more graduates are entering careers working
directly with the design and implementation of embedded
systems [1]. In order to prepare graduates for the challenges
in this field, many universities are incorporating embedded
systems concepts into their computer engineering curriculum.
However, embedded systems education is difficult to
generalize due to the following:

• Embedded systems education incorporates a broad
range of concepts from many disciplines;

• Different programs have different goals associated
with their embedded systems curricula;

• There exists a diverse range of embedded

This work was supported in part by the National Science Foundation under
grants DUE-0310831 and EEC-0431792.

Kenneth G. Ricks is with the Department of Electrical and Computer
Engineering, The University of Alabama, Tuscaloosa, Alabama, 35487-0286
USA. (phone: 205-348-9777; fax: 205-348-6959; e-mail:
kricks@coe.eng.ua.edu).

David J. Jackson is with the Department of Electrical and Computer
Engineering, The University of Alabama, Tuscaloosa, Alabama, 35487-0286
USA. (phone: 205-348-2919; fax: 205-348-6959; e-mail:
jjackson@eng.ua.edu).

 William A. Stapleton is with the Department of Electrical and Computer
Engineering, The University of Alabama, Tuscaloosa, Alabama, 35487-0286
USA. (phone: 205-348-1436; fax: 205-348-6959; e-mail:
wstapleton@eng.ua.edu).

applications;
• There are many different technologies used in

embedded systems;
• There is a wide range of design constraints

imposed on embedded systems; and
• There are many different embedded systems

architectures and platforms in use today.

Because of these characteristics, embedded systems

education is fragmented and customized from one university
to another. In an attempt to provide curricular guidelines for
education in this field, the IEEE/ACM CE2004 computer
engineering model curriculum for embedded systems was
created [2]. This model provides a comprehensive list of
recommended topics that are important for embedded systems
education. Universities are challenged to integrate these
topics into the classroom and to create laboratory platforms
capable of supporting these topics.

In this paper, we evaluate a popular embedded systems
architecture to determine its suitability as a general-purpose
laboratory platform for embedded systems education. This
architecture, the VMEbus, was developed nearly 25 years ago
and has been used extensively in industrial, military,
aerospace, communication, and control applications. Despite
its age, it is still one of the most popular architectures for
embedded and real-time systems accounting for 38% of the
embedded systems market in 2002 [3,4]. The emphasis here
will be to evaluate the VMEbus architecture against the model
curriculum as opposed to comparing various embedded
architectures.

The remainder of this paper is organized as follows.
Section II provides a general description of the VMEbus
architecture. Section III evaluates how the architecture
supports many of the components of the model curriculum.
Conclusions are presented in section IV.

II. THE VMEBUS ARCHITECTURE

A. Background
The VMEbus is a system architecture consisting of the

electrical specifications for a communication bus and the
mechanical specifications describing the backplane, bus
connectors, board sizes and formats, as well as card cages,
racks, and enclosures. VME stands for Versa Module

An Evaluation of the VME Architecture for Use
in Embedded Systems Education

Kenneth G. Ricks, David J. Jackson, and William A. Stapleton

E

63

Eurocard and refers to the VERSAbus, the predecessor
electrical data bus standard, and the Eurocard, a predecessor
mechanical format for computer components. The VME
specification was completed in 1982 and is now part of the
ANSI/IEEE STD. 1014-1987. This is an open architecture
allowing third parties to freely develop VMEbus products [5,
6].

B. General VMEbus Architecture
The VMEbus architecture is a shared system bus

architecture. The system bus resides on a backplane. The
backplane has slots where processor modules, memory
modules, or I/O modules connect to the system bus [6, 7].
The backplane and all of the modules connected to it reside in
an enclosure that serves to protect the components, provide
structural support for the system, and house utility
components such as power supplies and cooling fans. Figure
1 shows one possible system configuration. The modular
design of this architecture provides great flexibility. All the
components are available commercially-off-the-shelf (COTS).

C. System Bus Characteristics
A functional block diagram of the VME system bus is given

in Figure 2, and the basic system bus characteristics are
summarized in Table 1. It is beyond the scope of this paper to
describe all of the specific characteristics and the timing
behavior of the bus. However, Figure 2 and Table 1 provide a
broad summary of the basic bus characteristics that will aid
the reader during this evaluation. Also, these characteristics
are those of the basic VME32 specification. Many extensions
to this specification have been created, but for this discussion,
the basic design will be used.

Figure 1. Diagram of the general components and
configuration of the VMEbus architecture [8].

Table 1. Summary of the VME32 system bus characteristics
[5, 6].

Architecture
Master/Slave
Transfer Mechanism
Asynchronous (no central synchronization
clock)
Fully handshaked
Non-multiplexed
Multiplexed for 64-bit transfers
Addressing Range
16-bit (short I/O)
24-bit (standard I/O)
32-bit (extended I/O)
64-bit (long I/O)
Address range is selected dynamically
Datapath Width
8, 16, 24, 32, 64-bit
Datapath width selected dynamically

Unaligned Data Transfers
Yes
Compatible with most popular processors

Error Detection
Yes
Using BERR* (optional)

Data Transfer Rate
0-80 Mbytes/sec

Interrupts
7 levels
Priority interrupt system with STATUS/ID

Multiprocessing Capability
1-21 processors
Flexible bus arbitration

System Diagnostic Capability
Yes
Using SYSFAIL* (optional)

Mechanical Standard
Single height (160 x 100 mm eurocard)
Double height (160 x 233 mm eurocard)
DIN 603-2 connectors

Backplane

64

Figure 2. Functional block diagram of the VME system bus [6].

III. THE VMEBUS SUPPORT FOR THE MODEL
CURRICULUM

To evaluate the capability of the VMEbus architecture for
use as a general-purpose embedded systems educational
platform, its characteristics and capabilities will be discussed
as they apply to each embedded systems component of the
IEEE/ACM model curriculum for computer engineering [2].
The rationale is that if the architecture can address the
concepts in the model curriculum it should be able to support
the diverse embedded systems curricula being taught across
the country.

The embedded systems portion of the model curriculum is
broken into eleven areas of which seven are core topics and
four are considered to be elective material. In the following
subsections, each of these areas is addressed. Each section
begins with a list of the topics and learning outcomes from the
model for a particular area that can be supported by the
VMEbus architecture. How the architecture supports these
topics and learning outcomes for each area is then presented.

A. CE-ESY0 History and Overview (core)
Topics
• Highlight some people that influenced or contributed to

the area of embedded systems;
• Contrast between an embedded system and other

computer systems [2].

Learning Outcomes
• Identify some contributors to embedded systems and

relate their achievements to the knowledge area;
• Describe the meaning of an embedded system;
• Explain the reasons for the importance of embedded

systems [2].

The VMEbus architecture holds its own place in the history

and evolution of embedded systems. It was developed
specifically for embedded applications. It is one of the most
frequently used architectures for real-time applications [3] and
accounts for 38% of the embedded systems market [4]. Also,
the fundamental components of the VMEbus architecture are
designed and configured differently than those used in
desktop computer systems. The form factor, component

System
Clock
Driver

Power
Monitor

Arbiter

IACK*
Daisy-chain

 Driver

Bus
Timer

Backplane
Interface Logic

System Controller Module

Master

Interrupt
Handler

Interrupter

Requester

Location
Monitor

Backplane
Interface Logic

Data Processing Device
(CPU)

Interrupter

Slave

Backplane
Interface Logic

Memory or I/O
Devices

Defined by VMEbus Specification

Data Transfer Bus

Priority Interrupt Bus

Data Transfer Arbitration Bus

Utility Bus

65

placement, component interaction, and overall system design
is different. This makes it easy to introduce embedded
systems, compare and contrast them to general-purpose
computing systems, and to justify their significance.

B. CE-ESY1 Embedded Microcontrollers (core)
Topics
• Structure of the basic computer system: CPU, memory,

I/O devices on a bus;
• CPU families used in microcontrollers: 4-bit, 8-bit, 16-

32-bit;
• Basic I/O devices: timers/counters, GPIO, A/D, D/A;
• Polled I/O vs. interrupt-driven I/O;
• Interrupt structures: vectored and prioritized interrupts;
• Direct memory Access (DMA) transfers;
• Memory management units;
• Memory hierarchies and caches [2].

Learning Outcomes
• Understand the CPU in the context of a complete

system with I/O and memory;
• Understand how the CPU talks to the outside world

through devices;
• Understand how memory system design (caches,

memory management) affect program design and
performance [2].

The VMEbus architecture design is based upon the most

basic of system structures. The modular design and
interchangeable characteristics of the system components
gives students real system design and integration experience
reinforcing the first learning outcome. Also, the asynchronous
bus protocol and variable width data transfers make the
architecture compatible with many different processor
families. This is a key concept since a large percentage of
embedded systems rely on technology other than 32-bit
processors [9]. The ability to connect a logic analyzer directly
to the bus signals also provides a means for students to
analyze bus and system timing, to study the asynchronous
handshaking protocol in depth, and to investigate bus
arbitration and bus saturation.

Since the architecture was originally designed for I/O
intensive applications, there are many COTS I/O devices that
can be used to teach the I/O topics and achieve the second
learning outcome. The asynchronous system bus design
allows the architecture to support I/O peripherals of various
speeds using either polled I/O or an interrupt-driven design.
The VME system bus supports 7 levels of prioritized
interrupts and can handle vectored interrupts.

The VME specification also provides flexible memory
design helping to achieve the third learning outcome in this
area. For example, single transfers can be used or block
transfers can be used for DMA operations. Different memory
configurations can be created ranging from shared global
memory to completely distributed memory creating both
uniform memory access (UMA) and non-uniform memory
access (NUMA) system configurations [10]. Cache memory
is commonly available on processor modules and contributes

to the design of various memory hierarchies. This also allows
for the introduction of memory inconsistency into the
curriculum and provides a platform to demonstrate its effects
on system and program performance.

C. CE-ESY2 Embedded Programs (core)
Topics
• The program translation process: compilation,

assembly, linking;
• Fundamental concepts of assembly language and

linking: labels, address management;
• Compilation tasks: mapping variable to memory,

managing data structures, translating control structures,
and translating expressions;

• What can/cannot be controlled through the compiler;
when writing assembly language makes sense [2].

Learning outcomes
• Understand how high-level language programs convert

into executable code;
• Know the capabilities and limits of compilers [2].

The VMEbus architecture supports these topics and learning

outcomes through the wide variety of operating systems and
software development environments available for use with the
architecture. The variety of software available for this
architecture is unparalleled. For example, there are at least
103 operating systems known to be ported to this architecture
[11]. Compilers and assemblers for many different high-level
languages (HLLs), such as C, C++, and FORTRAN, and
assembly languages are available depending upon the system
components used. This makes it convenient to examine high-
level code and its associated lower-level constructs.
Applications can be implemented in both a HLL and an
assembly language for performance comparisons. Also, the
processor modules can be used without an operating system
(OS), which is often the case for embedded systems. In this
case, students are exposed to rudimentary development
environments possibly even entering the binary representation
of each instruction directly into memory manually. Students
can be exposed to both locally hosted development
environments and cross-compiled environments.

D. CE-ESY3 Real-Time Operating Systems (core)
Topics
• Context switching;
• Real-time scheduling concepts;
• Interprocess communication mechanisms [2].

Learning outcomes
• Distinguish a real-time operating system (RTOS) from

a workstation/server OS;
• Distinguish real-time scheduling from traditional OS

scheduling;
• Understand major real-time scheduling policies;
• Understand interprocess communication mechanisms

[2].
The VMEbus architecture is one of the most popular

66

architectures for real-time computing and has been for many
years [3]. Many different RTOSs have been ported to many
different processor families for this architecture. Some of
these RTOSs include Real-Time Linux, VxWorks, QNX, and
OS-9. Many of these RTOSs support the POSIX real-time
extensions for interprocess communication. Various
scheduling strategies and timing issues can be investigated. A
VMEbus system using an RTOS can be configured to address
an exact subset of these topics and learning outcomes to
accommodate different educational strategies. In addition,
multiple processor modules in one VMEbus system can be
configured to execute different OSs. In this way, direct
comparisons can be made between an RTOS and a non-real-
time OS executing on the exact same architecture.

E. CE-ESY4 Low Power Computing (core)
Topics
• Sources of energy consumption;
• Instruction-level strategies for power management:

function unit management;
• Memory system power consumption: caches, off-chip

memory;
• Power consumption with multiple processes;
• System-level power management: deterministic,

probabilistic methods [2].

Learning outcomes
• Understand why low-power computing is important;
• Identify sources of energy consumption;
• Identify possibly remedies for energy consumption at

various levels of design abstraction [2].

There is no specific support in the VMEbus specification

for low power computing. A typical VMEbus enclosure is not
remotely powered, thus eliminating the need for strict energy
management strategies such as those seen in handheld and
remotely deployed embedded systems. However, this does
not prevent one from monitoring energy consumption of the
system modules such as memory and comparing and
contrasting energy usage in single and multiple processor
systems to achieve the learning outcomes. Additionally, the
asynchronous bus protocol will support both high and low
speed processors in the same system. Since reducing clock
speed is one primary power management technique, this
architecture can provide a platform to make direct
comparisons of power consumption for system components
having different clock speeds. Finally, custom low power
circuitry can be developed on prototyping system modules and
interfaced to the VMEbus system for control and monitoring.
Controlling custom low power components within an existing
system architecture can also help to achieve the learning
outcomes suggested in this area of the model curriculum.

F. CE-ESY5 Reliable System Design (core)
Topics
• Transient vs. permanent failures in hardware;
• Sources of errors from software;
• The role of design verification in reliable system

design;
• Fault-tolerant techniques [2];

Learning outcomes
• Understand the variety of sources of faults in embedded

computing systems;
• Identify strategies to find problems;
• Identify strategies to minimize the effects of problems

[2].

To address these concepts and learning outcomes, students
using the VMEbus architecture can be exposed to a wide
variety of problems ranging from low-level errors in the
fundamental bus transactions to debugging software written in
high-level languages. Fault tolerance using redundancy can
be introduced by including redundant system components.
Students have access to both hardware and software on these
systems requiring failure strategies and debugging in both
domains.

G. CE-ESY6 Design Methodologies (core)
Topics
• Multi-person design projects;
• Designing on-time and on-budget;
• Design reviews;
• Tracking error rates and sources;
• Change management [2].

Learning outcomes
• Understand why real-world projects are not the same as

class projects;
• Identify important goals of the methodology;
• Understand the importance of design tracking and

documentation [2].

The VMEbus architecture actually supports these design

concepts and learning outcomes better than many other
educational technologies. The reason for this is that the
VMEbus architecture supports design at various levels of
abstraction. For example, given a set of modules, students can
make meaningful system-level design decisions including the
number of processors, the design of the I/O system, and the
configuration of memory (distributed, shared, hierarchy
characteristics, etc.). Low-level design can be incorporated
into a project by having students design logic components
capable of interfacing to the VME system bus. Real-world
concepts can be addressed by incorporating VMEbus
component documentation into projects, thus exposing
students to typical technical documentation they are likely to
see as a practicing engineer. This tends to reinforce the
importance for students to produce accurate documentation of
their own systems. The fact that the VMEbus is a real
embedded systems architecture can motivate students since
they see the project as more than an academic exercise.

H. CE-ESY7 Tool Support (elective)
Topics
• Compilers and programming environments;

67

• Logic analyzers;
• RTOS tools;
• Power analysis;
• Software management tools;
• Project management tools [2].

Learning outcomes
• Understand the role of hardware and software tools in

system design;
• Understand how to use tools to support the

methodology [2].

The tools and environments available to VMEbus designers

are plentiful and varied in design, objective, and scope. There
are many different software tools such as compilers,
assemblers, debuggers, development environments, and real-
time analysis tools. There are also custom function libraries
and drivers tailored to particular system components available
from various vendors. For locally hosted systems, software
tool availability is dependent upon the OS executing on the
processor module. But, this is typically not a limitation since,
as previously mentioned, at least 103 OSs have been ported to
this architecture [11]. There are also special purpose logic
analyzers designed specifically to analyze VME system bus
timing. Individual institutions can select particular OSs and
tools to tailor their VMEbus system to accommodate their
particular curricular goals and objectives. Finally, something
that is not directly listed in the model curriculum but does
represent a major concept is the development of device drivers
[12]. If desired, students can develop drivers for various I/O
peripherals using this architecture.

I. CE-ESY8 Embedded Multiprocessors (elective)
Topics
• Importance of multiprocessors as in performance,

power, and cost;
• Hardware/software partitioning for single-bus systems;
• More general architectures;
• Platform field programmable gate arrays (FPGAs) as

multiprocessors [2].

Learning outcomes
• Understand the use of multiple processors in embedded

systems;
• Identify trade-offs between CPUs and hardwired logic

in multiprocessors;
• Understand basic design techniques [2].

With the increasing complexity of embedded systems,

multiprocessing is becoming a requirement in order to meet
performance specifications. This is especially true for real-
time applications. One of the strengths of the VME
architecture is its multiprocessing capabilities [4]. The
modular design of the components makes it easy to create
various multiprocessor configurations. For example, all
processors can be identical creating a homogeneous system, or
each processor can be different, even executing different OSs,

to produce a heterogeneous system. Memory configurations
are also flexible ranging from completely shared to completely
distributed. Thus, the VMEbus architecture can easily be used
to teach students general multiprocessor architectures and
basic design techniques. FPGA devices integrated into a
VMEbus module are available and can be used to teach
hardware/software co-design [13], partitioning, trade-off
analysis and performance analysis. The use of reconfigurable
hardware technology for embedded systems education is
common [14], but incorporating it into the VMEbus
architecture creates a robust educational platform where this
hardware can be integrated with real-time system components.
Multiprocessor architectures can be used to teach other topical
areas in the model curriculum as well including bus
characteristics such as arbitration and saturation. Bus
saturation is a key design consideration within multiprocessor
architectures. Also, memory characteristics such as mutual
exclusion and interprocess communication, as discussed in
section III D, are reinforced.

J. CE-ESY9 Networked Embedded Systems (elective)
Topics
• Why networked embedded systems;
• Example networked embedded systems;
• The OSI reference model;
• Types of network fabrics;
• Network performance analysis;
• Basic principles of the Internet protocol;
• Internet-enabled embedded systems [2].

Learning outcomes
• Understand why networks are components of

embedded systems;
• Identify roles of hardware and software in networked

embedded systems;
• Compare networks designed for embedded computing

with Internet networking [2].

The VMEbus architecture can provide insight into

networking concepts in several different ways. Since the
architecture is common in industrial control applications, it is
normal to have VMEbus enclosures physically distributed
throughout the factory yet logically connected to promote
sharing of resources and provide for centralized monitoring
and control. There are many different products available that
can logically connect distributed VMEbus systems. Some of
these products include reflective memory (shared memory),
fiber optics, and various standardized communication
protocols like the TCP/IP and the MIL-STD-1553 bus
standard. With so many choices, institutions can investigate
concepts such as shared memory, dedicated local-area-
networks, shared wide-area-networks, different protocols, and
network bandwidth and congestion. Comparisons can be
made between dedicated networks and Internet networking.
Various customized networked systems can be created to
achieve the specified learning outcomes.

68

K. CE-ESY10 Interfacing and Mixed-Signal Systems
(elective)
Topics
• Digital-to-analog (D/A) conversion;
• Analog-to-digital (A/D) conversion;
• How to partition analog/digital processing in interfaces;
• Digital processing and real-time considerations [2].

Learning outcomes
• Understand pros and cons of digital and analog

processing in interfaces;
• Understand fundamentals of A/D and D/A conversion

[2].

A/D and D/A conversion are important components of I/O

processing and are addressed in that context in section III B.
The main topic in this section deals with mixed-signal design.
There is no direct support for this within the VMEbus
specification. However, mixed-signal design fits well within
the VMEbus architecture which was designed for I/O
intensive applications. Specifically, interfacing the digital and
analog components of the system can be addressed using bus
modules which include prototyping areas for custom design.
In this way, students can be tasked with interfacing analog
components to an existing digital system outside the normal
I/O context. The real-time aspects of the architecture provide
unlimited possibilities for investigating signal processing with
real-time constraints.

IV. CONCLUSIONS
Embedded systems education is rapidly being implemented

in electrical and computer engineering programs across the
nation. But, it is unlikely that institutions of higher learning
will implement a common embedded systems curriculum in
the near future. The broad nature of the field and different
educational objectives have led to highly customized curricula
supported by equally customized laboratory platforms. The
IEEE/ACM model curriculum attempts to provide guidelines
for the concepts required in this field. Laboratory platforms
capable of supporting these concepts can be applied as
general-purpose educational tools across many curricula.

In this paper, the VMEbus architecture is evaluated against
the model curriculum to determine its suitability as a general-
purpose educational platform in this field. This architecture is
shown to support many of the concepts in the model
curriculum addressing many different educational objectives
and learning outcomes. Specifically, there is strong support
for topics including historical and introductory concepts,
system design, I/O, real-time systems, multiprocessing,
memory configurations, networked embedded systems, and
software tool support. Other benefits of the use of this
architecture include exposing students to a real-world
embedded architecture, the wide range of COTS components
available supporting various system configurations, and its
longevity in the field.

Like all other architectures, it is not perfect. The VMEbus
architecture does not address one key concept from the model

curriculum, low-power computing. Also, size constraints are
not addressed outside the context of the VME form factor.
Although size is not specifically part of the model curriculum,
system-on-a-chip implementations are critical for many
embedded applications including handheld consumer
electronics. Finally, VME system components are relatively
expensive. This is a serious consideration for educational use.

Despite these weaknesses, the authors feel that the VME
architecture represents a powerful, capable embedded systems
architecture that is appropriate for general-purpose embedded
systems education based upon its strong support for most of
the concepts in the model curriculum.

REFERENCES

[1] Y. H. Lee, A. Oo, “Teaching Microprocessor System Design Using a

SoC and Embedded Linux Platform”, Proceedings of the 2005
Workshop on Computer Architecture Education (WCAE) held in
conjunction with the 32nd International Symposium on Computer
Architecture, Madison, Wisconsin, June 5, 2005.

[2] Joint Task Force on Computer Engineering Curricula, IEEE Computer
Society, Association for Computing Machinery, “Computer Engineering
2004: Curriculum Guidelines for Undergraduate Degree Programs in
Computer Engineering”, December 12, 2004, pp. A.43 – A.45,
Available: http://www.computer.org/education/cc2001/CCCE-
FinalReport-2004Dec12-Final.pdf.

[3] A. Kornecki, H. Wojcicki, L. Peltier, J. Zalewski, N. Kruszynska,
“Teaching Device Drivers Technology in a Real-Time Systems
Curriculum”;
Proceedings of the 1998 Real-Time Systems Education III, Nov. 21,
1998, pp. 42 – 48.

[4] J. Moll, “Shared Bus Versus Switched Fabric Technologies”, EE Times,
January 17, 2003, Available online:
http://www.eetimes.com/story/OEG20030116S0036.

[5] IEEE Standard for a Versatile Backplane Bus: VMEbus, ANSI/IEEE
Standard 1014-1987.

[6] W. D. Peterson, The VMEbus Handbook3 3rd Edition, Scottsdale,
Arizona: VFEA International Trade Association, 1993.

[7] K. G. Ricks, “An Improved Bus-Based Multiprocessor Architecture”,
M.S. thesis, Electrical and Computer Engineering Dept., the University
of Alabama in Huntsville, Huntsville, Alabama, 1997.

[8] M. Timmerman, “The Right Bus in the Right Place: A Tutorial (part 1)”,
Real-time Magazine, 4Q96, pp. 6-11, Available: http://www.realtime-
info.be/magazine/index/index964.htm.

[9] P. Koopman, “Embedded Systems Design Issues (the Rest of the
Story)”, Proceedings of the 1996 IEEE International Conference on
Computer Design: VLSI in Computers and Processors, October 1-9,
1996, pp. 310-317.

[10] K. Hwang, Advanced Computer Architecture: Parallelism, Scalability,
Programmability, McGraw-Hill, New York, New York, 1993.

[11] Portions of this FAQ have been reprinted (with permission) from The
VMEbus Handbook, 4th Edition by Wade D. Peterson. VITA 1997. For
more details the user is directed to the handbook, or the VMEbus
specification(s). Other items have been reprinted from the VITA Journal
(with permission) VMEbus FAQ's article series by John Rynearson.
Available online: http://www.vita.com/vmefaq/

[12] A. Kornecki, H. Wojcicki, J. Zalewski, N. Kruszynska, “Teaching
device drivers technology in a real-time systems curriculum”
Proceedings of the 1998 Real-Time Systems Education III, Nov. 21,
1998, pp. 42 – 48.

[13] W. Wolf, Computers as Components: Principles of Embedded
Computing System Design, Morgan Kaufmann, New York, New York,
2001.

[14] Proceedings of the 2005 International Conference on Microelectronic
Systems Education, Anaheim, California, June 12-13, 2005.

69

